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Biochemistry II (BB 422/622)
OUTLINE
Review of 421
Goals of 422
Review of chemical principles

Thermodynamics
C/O cycles
Overview of Metabolism
ATP cycles

Energy Coupling
Chemical Reactivity
Bioenergetics
Membranes and Transport

Review of membrane 
structure, dynamics, & proteins

Membrane transport
Energetics
Facilitative Diffusion
Active Transport

Primary
Secondary

Examples:
Facilitative Diffusion

Ionophore
Maltoporins
GLUT1 transporter
Aquaporin
Selective ion channel for potassium 

(K-channels)
Active Transport

Primary (1°)
Na+/K+

ABC
Secondary (2°)

Na+/Glc

Biological Membrane 
Transport

Reminder of membrane structure, membrane proteins,
and dynamics
Membrane transport

Energetics
Types

“Crossing the Berlin Wall of the cell - Membrane Transport”
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Membrane Transport

• Cell membranes are permeable to small nonpolar 
molecules that passively diffuse through the membrane.

• Passive diffusion of polar molecules involves desolvation
and thus has a high activation barrier, unless desolvation
energy is lowered.

• Transport across the membrane can be facilitated by 
proteins, which provide an alternative diffusion path.

• Such proteins are called transporters or permeases.

Dr. Kornberg: “The Berlin Wall 
of the Cell”

Lecture 01.23.17 (21:04-23:56 & 35:27-38:29)-Berlin Wall

Types of Membrane Transport

Sout

X–Sin

A–X A

Group 
translocation 
(against 
concentration 
gradient)

Ion channel (down 
electrochemical 
gradient; may be gated 
by a ligand or ion)

[S]in[S]out<<>> [S]in[S]outNon-mediated

All others are 
Mediated

>> [Ion]in[Ion]out
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Aside from any energy concerns:  Three Classes of 
Transport Systems 

Membrane Transport

Membrane Transport
Non-mediated

Mediated
Simple diffusion
Facilitated diffusion, ionophore
mediated, active transport

Diffusion is governed byFick’s law of diffusion:
Q = rate of diffusion.
D = diffusion coefficient
A = area across which diffusion occurs
[Sout](P1) and [Sin](P2)= concentrations on each side of membrane.
L = thickness of the membrane.
DA/L is the permeability coefficient.

Q

Sout

Q

Sout

Thus, “diffusion” is Non-mediated
Mediated behaves like saturation kinetics

C + Sout ⇌ CS ⇌ C + Sin

Q =
Qmax [Sout] 
Kd + [Sout]

How do you experimentally 
determine the kind of 
transport?

Thus, “diffusion” 
is Mediated
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• Transport across a membrane must be 
energetically favorable.  There are two types of 
energies at play:
– Concentration dependence: The solute moves toward 

chemical equilibrium across the membrane.
– Electrical dependence: The solute moves toward 

charge equilibrium across the membrane.

Membrane Transport

This is why we say 
“down” or “against” the 
electro-chemical
gradient.

How is this gradient 
quantified?

What is this electrochemical gradient?

Energetics
Membrane Transport

[Sin]

[Sout]

If [Sout] > [Sin], DG’ is ⊝

Transport can be considered like a chemical reaction with 
regard to mass action of Sout to Sin Sout ⇌ Sin

DG’ = DG°’ + RTln [Sin ]
[Sout ]
_______

But, DG°’ = 0 because there is no chemical reaction:

DG’ = RTln ____[Sin ]
[Sout ]

If [Sout] < [Sin], DG’ is ⊕
But, membranes in biology have a difference
in charge (inside different from outside).  
AND, if S is charged, we must account for this:

+  zF D$DG’ = RTln _____[Sin]
[Sout]

Where “z” is the charge 
on S, and D$ is the 
membrane electrical 
potential in volts

Inside

Outside
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Energetics
Membrane Transport

[Sin  ]

[Sout]
Sout ⇌ Sin

+  zF D"DG’ = RTln ____Sin

Sout
Where “z” is the charge on S, and D" is 
the membrane electrical potential in volts; 
simply called the “membrane potential”

D" = charge difference “in” versus “out”
So, conventionally the direction of transport is considered 
out-to-in, as written in the reaction above.
If its more negative in than out, D" is ⊝ (as depicted)
And, if its more positive in than out, D" is⊕

Now, if D" is negative, and S has a positive charge (z is +1, as 
depicted), then  zF D" makes a contribution to DG’ making it 
even more negative, i.e., favorable.
As a further consequence, if D" is maintained, then at equilibrium 
[Sin] > [Sout].

⊕ ⊕ ⊕ ⊕ ⊕

⊝ ⊝ ⊝ ⊝ ⊝

⊕

⊕ Inside

Outside

Membrane Transport

Facilitative 
Diffusion
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• Proteins of the E. coli 
outer membrane

• Maltoporin (derived from 
PDB ID 1MAL) is a maltose 
transporter (a trimer; each 
monomer consists of 16 β
strands).

Examples of Facilitative Diffusion
(including ionophore mediated)

Membrane Transport

Ionophore

Valinomycin

Examples of Facilitative Diffusion
Membrane Transport



7

Examples of Facilitative Diffusion
Membrane Transport

Examples of Facilitative Diffusion
Membrane Transport

Prevention of proton (+H3O) transport:
role of His180 –
role of Arg195 –
role of NPA –

Gates the size of pore at 2.8 Å

Repels hydronium ions

Positive poles at ends of helices repels 
hydronium ions, but also breaks up 
network of water molecules
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Membrane Transport
Examples of Facilitative Diffusion
a4

Membrane Transport
Examples of Facilitative Diffusion
a4
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Membrane Transport

KcsA K+ channel in complex with a monoclonal Fab antibody fragment

K channel

https://www.youtube.com/watch?v=IXPmgprE8rg&feature=youtu.be

Membrane Transport
Examples of Facilitative Diffusion

Ion Radius 
(Å)

Energy of 
dehydration 
(kcal/mole)

Li+ 0.6 – 98
Na+ 1.0 – 72
K+ 1.3 – 55

Rb+ 1.5 – 51
Cs+ 1.7 – 47

How is the >100X 
specificity for K+

achieved?

This picture is not quite 
correct as K+ makes eight 
coordination bonds; this 
was revealed by the high 
resolution structure

https://youtu.be/IXPmgprE8rg
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Membrane Transport
Examples of Facilitative Diffusion

How is the >100X 
specificity for K+

achieved?

Ion Radius 
(Å)

Energy of 
dehydration 
(kcal/mole)

Li+ 0.6 – 98
Na+ 1.0 – 72
K+ 1.3 – 55

Rb+ 1.5 – 51
Cs+ 1.7 – 47

Membrane Transport
Examples of Facilitative Diffusion

While specificity for Na+ over K+ can be 
achieved by the size of the binding site, that 
won’t work the other way around.  To get 
specificity of K+ over Na+, the protein takes 
advantage of the higher (30%) energy of 
dehydration.  It takes more energy to 
dehydrate Na+ than K+ and the protein doesn’t 
make as good bonds to Na+ ion as does water 
shell (see off-set oxygens in polygon).

Ion Radius 
(Å)

Energy of 
dehydration 
(kcal/mole)

Li+ 0.6 – 98

Na+ 1.0 – 72

K+ 1.3 – 55

Rb+ 1.5 – 51

Cs+ 1.7 – 47

In addition, there is no room for 
the axial waters in the pore, 
which are not needed for K+

This energetic difference 
is due to Coulomb's law;
as the distance of water 
to the positively charged 
nucleus is shorter for 
sodium than potassium.
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Membrane Transport

Active 
Transport

Membrane Transport
Examples of Active Transport
Two Types
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Membrane Transport
One of the best and most important 

examples of PRIMARY Active Transport:
The sodium–potassium (Na+–K+) pump is a 

primary active anti-porter.
Found in all animal cells.
The pump is an integral membrane glycoprotein.

Sodium–
potassium (Na+–

K+) pump

Membrane Transport
a2b2gpentamer
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Membrane Transport
Sodium–

potassium 
(Na+–K+) 

pump

Due to b subunit

Membrane Transport
Sodium–

potassium (Na+–
K+) pump

Potassium binding causes change to E1, which then causes Pi hydrolysis

https://www.youtube.com/watch?v=_bPFKDdWlCg

Start at 0:30 – 2:00

https://www.youtube.com/watch?v=_bPFKDdWlCg

